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Stereoselective synthesis of 1,2-cis galactosides: synthesis of
a glycolipid containing Gala1-6Gal component from
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Abstract—An a-selective galactosylation was demonstrated under various conditions. Among these a-galactoside approaches, high
a-selectivity was achieved by the virtue of 4,6-O-di-tert-butylsilylene (DTBS) group. Yield was further improved by the influence of
a 2-O-benzylated donor compared to 2-O-benzoylated donor. This method was then applied to the first highly stereoselective
synthesis of a newly found trisaccharide glycosphingolipid in Zygomycetes species.
� 2006 Elsevier Ltd. All rights reserved.
Chemical synthesis of oligosaccharides and glycoconju-
gates has great contribution in the elucidation of their
biological functions. It is clearly evident that chemical
synthesis of such complex structures in many laborato-
ries requires access to reliable and high-yielding
glycosylation methods. Moreover the stereoselective
introduction of the glycosidic linkage is one of the most
challenging aspects of oligosaccharide synthesis. The
historical development of glycoside synthesis is dis-
cussed in many review articles and books.1 However,
until now stereoselective introduction of 1,2-cis glyco-
sides has often imposed serious problems. Stereoselec-
tive formation of 1,2-cis-glycosides is generally a
difficult issue where no assisting effect such as participa-
tion of the neighboring group is available. Construction
of the a-glycosidic linkage has been developed by many
carbohydrate chemists. Among them, Lemieux’s in situ
anomerization using glycosyl halides as donors and
Bu4NBr as a promoter has already been reported in
1975,2 and the use of combinations of diethyl ether as
a solvent and perchlorates as a source of counter anion
against oxocarbenium ion has been frequently reported
by other groups. Recently, regarding the selective a-
glycosylation of the gluco- and/or galacto-, Boons
et al. have reported a-orienting solvent effect of diox-
ane–toluene.3 Similarly, Fukase et al. have performed
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extensive studies in this field.4 They have reported that
N-phenylselenophthalimide (N-PSP) promoted glycosyl-
ation with thioglycosides when used in combination
with Mg(ClO4)2,4a and stereoselectivity was observed
under their reaction condition from the acid promoter
point of view. Furthermore, they also found that stereo-
selectivity can also be controlled by effect of the substi-
tution group. The bulky protective groups (TBDMS,
Trt, TBDPS, and Troc) introduced at the 6-position of
glucosyl donors increase a-selectivity. However, exami-
nation of a-stereoselective Gal1-6Gal linkage has hardly
been conducted, so we paid more attention on a-
stereoselectivity.

In our continuing and systematic studies to elucidate the
biological functions of glycosphingolipids, we have been
synthesizing glycolipids from various lower animal
species.5 Thus this time, a trisaccharide glycolipid,
Gala1-6Galb1-6Galb1-Cer was the target for the syn-
thetic studies as described herein as part of our investi-
gation on Gala1-6Gal construction. The constructed
Gala1-6Galb1-6Galb1-Cer, a neutral glycosphingolipid
was isolated by Aoki et al. along with Gala1-6Gala1-
6Galb1-6Galb1-Cer and Gala1-6Gala1-6Gala1-
6Galb1-6Galb1-Cer from Mucor hiemails, a typical
Zygomycetes species.6 Their structures were completely
determined by compositional sugar, fatty acid, and
sphingoid analyses, methylation analysis, MALDI-
TOFMS spectrometry, and NMR spectroscopy. These
three molecules constitute a novel family of neutral
glycosphingolipids.
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For construction of Gala1-6Galb1-6Galb1-Cer, we first
carried out the glycosylation under Ar atmosphere in a
mixture of 1:3 CH2Cl2–THF by the use of 1.5–2.0 equiv
of N-iodosuccinimide (NIS) and 0.2 equiv of trifluoro-
methanesulfonic acid (TfOH) against a donor as a com-
mon method. An excess (1.2 equiv) of a donor was used
against the acceptor. As summarized in Chart 1 and
Table 1, desired a-galactosides were not obtained
(a:b = 1.5:1�3:1) stereoselectively although yield was
satisfactory in all case (entries 1–3). Even by using the
favorable effect of ether type, cyclopentyl methyl ether,
there was no stereoselectivity (entries 4 and 5). In addi-
tion, more expectable a-selective glycosylation was car-
ried out by using the combination of N-PSP and
Mg(ClO4)2 as a effective promotor. The results of
Gala1-6Gal linkage increased a-selectivity compared
to entries 1–5 but the a-selectivity did not improve as
high as in the case of Glca1-6Glc by Fukase.4a In the en-
try 8, the use of 6-O-TBDMS protecting glycosyl donor
caused many undesired side reactions and low yield. In
their letter, they have also mentioned that more reliable
a-selective glycosylation was found by using 6-O-Troc
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Chart 1.
thioglycosyl donor. Thus we also examined the a-glyco-
sylation with 1 and 6 by using some conditions (entries
9–11), out of which entry 11 showed much better selec-
tivity compared to entry 1. After coming up to this
point, we found that stereoselectivity of a-glycosylation
using galactosyl donor with 6-OH galactosyl acceptor is
difficult in comparison to Glca1-6Glc.

On the other hand, Kiso et al. have reported that 4,6-O-
di-tert-butylsilylene (DTBS) group on the galacto-type
donors is responsible for a-selective galactosylation
compatible with the neighboring functionality on the
C-2 position, for example, NTroc and OBz.7 Thus we
carried out the glycosylation using this method also,
and found that condensation of galactosyl acceptor 2
with galactosyl donor 7 (OBz group on the C-2 position)
in the presence of NIS/TfOH gave desired a1-6 disac-
charide 15 in the 63% yield (entry 12). Obviously, this
time also it was only a. In addition, coupling of 1 or 2
with donor 88 (OBn group on the C-2 position), which
was prepared by silylation with di-tert-butylsilyl bis(tri-
fluoromethanesulfonate) of phenyl 2,3-di-O-benzyl-1-
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Table 1. Galactosylation of various conditions

Entry Donor Acceptor Time Product Promoter Sol. Temperature a:ba Yield
(%)

1 3 1 4 h 9 NIS (1.5)–TfOH (0.2) 1:3 CH2Cl2–THF �60 �C 2:1 92
2 4 1 12 h 11 NIS (2.0)–TfOH (0.2) 1:3 CH2Cl2–THF �20 �C 3:1 92
3 5 1 12 h 12 NIS (2.0)–TfOH (0.2) 1:3 CH2Cl2–THF �20 �C 1.5:1 75
4 3 1 4 h 9 NIS (1.5)–TfOH (0.2) Cyclopentyl methyl ether �60 �C!�10 �C 1:1 90
5 4 1 12 h 11 NIS (2.0)–TfOH (0.2) Cyclopentyl methyl ether �20 �C 1:1 77
6 3 1 48 h 9 N-PSP (1.5)–Mg(ClO4)2 (0.5) Diethyl ether rt 3.7:1 78
7 3 2 44 h 10 N-PSP (1.5)–Mg(ClO4)2 (0.5) Diethyl ether rt 3.8:1 87
8 5 1 22 h 12 N-PSP (1.5)–Mg(ClO4)2 (0.5) Diethyl ether rt 3.7:1 14
9 6 1 66 h 13 N-PSP (1.5)–Mg(ClO4)2 (0.5) Diethyl ether rt 2.5:1 88
10 6 1 3 h 13 NIS (2.0)–TfOH (0.2) Cyclopentyl methyl ether �40 �C!�20 �C 2.7:1 74
11 6 1 6 h 13 NIS (2.0)–TfOH (0.2) 1:3 CH2Cl2–THF �40 �C!�20 �C 3.7:1 93
12 7 2 4 h 15 NIS (2.0)–TfOH (0.2) CH2Cl2 0 �C a only 63
13 8 1 30 min 14 NIS (2.0)–TfOH (0.2) CH2Cl2 0 �C a only 98
14 8 2 30 min 16 NIS (2.0)–TfOH (0.2) CH2Cl2 0 �C a only 97

a The anomer ratios were determined by comparison of the intensities of the H-10 signal of the disaccharides in 1H NMR.
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thio-b-DD-galactopyranoside, gave disaccharide 149 or 16
in 98% or 97% yield (entries 13 and 14). As described
above, the combinations of DTBS group and 2-O-ben-
zyl donors effectively promotes glycosylation with thio-
glycoside in excellent yield.

Next, we applied this method to the synthesis of the gly-
colipid, and this is the first report on the chemical syn-
thesis of Gala1-6Galb1-6Galb1-Cer from the natural
products. Glycosylation of acceptor 2 with 14 in the
presence of NIS, TfOH and 4 Å molecular sieves in
dichloromethane gave the desired trisaccharide (17) in
85% yield after purification.10 The stereochemistry of
the newly formed glycosidic linkage could be determined
by 1H NMR spectroscopy (H-1 0, 4.79 ppm, J 7.9 Hz).
Selective removal of the DTBS group in 17 with TBAF,
benzyl group by catalytic hydrogenolysis over 10% Pd–
C in MeOH–AcOH (5:1) and subsequent acetylation
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Scheme 1. Reagents: (a) NIS, TfOH, MS 4 Å CH2Cl2 85%; (b) (i) 1 M TBAF
steps); (c) (i) TFA, CH2Cl2; (ii) CCl3CN, DBU, CH2Cl2, 87%; (d) TMSOTf
gave 18. Selective removal of the 2-(trimethylsilyl)ethyl
(SE) group with trifluoroacetic acid in dichloromethane,
and treatment with trichloroacetonitrile in the presence
of DBU gave the corresponding a-trichloroacetimidate
19. Glycosylation of (2S,3R,4E)-3-O-benzoyl-2-hexa-
decanamido-4-octadecane-1,3-diol 205f with 19 was
carried out in the presence of trimethylsilyl trifluorome-
thanesulfonate (TMSOTf) and 4 Å molecular sieves to
afford the desired b-glycoside 21 in 64% yield. Finally,
removal of acyl groups in 21 under Zemplen conditions
and column chromatography on Sephadex LH-20 fur-
nished a target glycolipid 22 (Scheme 1). The structure
and purity of 22 were demonstrated by the 1H NMR
and HR-FABMS.11

In conclusion, a highly stereoselective efficient synthesis
of a newly found trisaccharide glycosphingolipid from
Zygomycetes species has been achieved.
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